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Abstrsct. The finite-lattice method of series expansion has ken used to extend low-tempaahm 
series for the p h t i o n  function, order parameter and susceptibility of the 3-slate PMts model on 
he simple cubic lattice to order 83 and the high-temperame expansion of the parlition funaion 
U) order u2'. We use the numerical data to show mat the transition is rust-onler, and estimate 
the latent heal, the discontinuiry in the magnetization. and a number of other critical paramten. 

1. htrodnction 

This is the third in a series of papers in which we study the critical behaviour of the q-state 
Potts model in both two and three dimensions using series expansions derived from the 
finite-lattice method. The f is t  paper (Guttmann and Enting 1993a). denoted I hereafter, 
gave the general expressions used to derive high- and low-temperature expansions for the 
q-state Potts model. In I, series expansions for the q = 2 using) case on the simple cubic 
lattice were analysed. The second paper (Briggs et al 1994), denoted U hereafter, presented 
and analysed series for the bulk thermodynamic properties for Pot@ models on the square 
lattice for integer q ranging from 2 to 10. These were used to develop and test series 
analysis techniques that could distinguish between fist-order and continuous transitions. 
The present paper considers the 3-state model on the simple cubic lattice. 

After the initial paper by Potts (1952), the model attracted little attention for almost 
two decades. During the 1970's there was greatly renewed interest in the model, with 
new exact results, series studies and renormalization-group calculations and applications 
to phase transitions in surface films. A particular concern at that time was the failure 
of renonnalization-group calculations to reproduce the exact mults for the order of the 
transition in two dimensions. A review by Wu (1982) described much of the work on the 
Potts model. 

Of even greater interest is the behaviour of the three-dimensional Potts model. As noted 
above, for the q = 2 (Xing) case, the low-temperature series and some high-temperature 
series have recently been extended in I. For q = 3, the three-dimensional Potts model 
is of particular interest as it is identical to the Z(3) clock model. This in turn is the 
centre of SU(3),  so it is believed that the effective theory for Polyakov loops in finite- 
temperature d = 4SU(3) lattice gauge theory should be in the same universality class as 
the threedimensional 3-state Potts model. The Polyakov loops are the order parameter for 
the deconfinement transition that is thought to take place in QCD as the temperature is raised 
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(hadronic quarks going over to a plasma of free quarks and gluons). The connection 
(Svetitsky and Yaffe 1982) is then that, if the whole space of d = 3, q = 3 Potts 
Hamiltonians has a first-order transition, then the above SU(3) transition must also be 
first-order. By this we mean not just nearest-neighbour ferromagnetic couplings, but the 
whole space of arbitrary short-range couplings and multi-body interactions, with only the 
Z(3) symmeq property. On the other hand if such a Potts model could be found which 
displayed a continuous transition, then the SU(3) transition could be either first-order or 
continuous, but the particular Potts model would be a candidate for a universality class of 
second-order transitions in the SU(3)  gauge model. Our work in this paper is restricted to 
the isotropic, nearest-neighbour Potts model, so we cannot answer the general question of 
the nature of the SU(3) phase transition-zxcept to proffer the rather vague notion that a 
first-order transition appears more likely. 

A number of earlier studies of the Potts model (Knak Jensen et af 1979, Nienhuis et al 
1981, Blote and Swendsen 1979, Kim and Joseph 1975, Kogut and Sinclair 1981, Enting 
1974, Herrman 1979) claimed to see evidence of a first-order transition for the three- 
dimensional 3-state model, but these were based on Monte Carlo analyses of small lattices, 
or series work on short series. More recent, and more precise Monte Carlo studies by 
Fukugita et al (1990) supported the first-order results, as did the Monte Carlo study of Lee 
and Kosterlitz (1991). who gave evidence that the critical number of states qc = 2.45 10.1. 
above which the transition is first-order. In order to look at more of the space of short-range 
couplings, Gavai and Karsch (1992) carried out a Monte Carlo study of the three-dimensional 
3-state Potts model with mixed nearest-neighbour ferromagnetic and next-nearest-neighbour 
antiferromagnetic coupling. They found a lack of criticality in these extended Potts models. 
Furthermore, Alves et al 1991 also used high-precision Monte Carlo methods to conclude 
that the transition was first-order. Very recently, Bhanot et al (1993) used a method similar to 
ours to extend the Potts model series, and analysed the series to provide additional evidence 
for a first-order transition., After this work was completed, Vohwinkel (1993) showed how 
the shadow-graph method'of Sykes (1965) could be used to extend the series even further 
than we have. However, Vohwinkel has only presented the magnetization series, and no 
analysis. 

Salient QCD calculations include those of Bacilieri et a1 (1988) and of Brown and Christ 
(1988) on d = 4SU(3), who gave conflicting results, with the former claiming to find 
evidence of a second-order phase transition, while the latter claimed to find evidence of a 
first-order transition. Cabasino er al (1989) argued that the evidence was equally good for 
a first-order or continuous transition, while Brown (1989) argued for a first-order transition. 
Another large-scale QCD Monte Carlo calculation was can id  out by Fukugita et af (1989), 
who claimed to find strong evidence for a first-order transition. 

In order to distinguish between first-order and continuous transitions we have analysed 
the series using differential approximants (Guttmann 1989) to effectively represent the series. 
'Ihe studies of the square lattice system in n gave a procedure for determining the order of 
the transition in this way. We have used these ideas to locate the critical temperature, and 
to identify the nature of the transition. 

The layout of the remainder of the paper is as follows. In the next section we briefly 
describe the finite-lattice method and the nature of the results we have obtained therefrom. 
In section 3 we analyse the data. In section 4 we present a discussion of the results. 

A J G u m "  and I G Enting 

2. Series expansions from the finite-lattice method 

The definitions and notation follow the usage of I (and U). The standard q-state Potts model 
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is defined on a lattice with each site having a 'spin' variable that takes on q possible values 
(denoted '0' to q - 1). An energy A E  is associated with each pair of interacting sites that 
are in different spin states, and an energy of 0 applies to pairs of interacting sites in the 
same state. We consider the simple cubic lattice, with each site interacting only with its six 
nearest neighbours. Each site not in state '0' has an additional field energy H. 

The thermodynamic quantities can be derived from the partition function. We choose 
the normalization such that the state with all sites in state '0' has mm energy. In this 
normalization, the partition function is commonly denoted A. 

We work in tams of the expansion variables z = exp(-AEjkT), p = exp(-HjkT) 
and the high-temperature variable U = (1 - z)/(1+ (q - 1)z). 

For the simple cubic lattice, the high-temperature expansion for the partition function 
takes the form 

A = q-2(i + (q - 1)z)30(u) 

w) = Cad = 1 + 3(q - 

(1) 

with 

+. . . 
n 

For the low-temperature expansion, we use a modified field variable x = 1 - U. and 
truncate at order xz so that the partition function is expressed as 

A = + xhl  +x2n2 +. . . . 
The expansion of the zero-field partition function is written as 

The intemal energy is given by 

the order parameter by 

and the susceptibility by 

Note that for q 2 3 an additional 'eansverse' susceptibility can be defined (Straley and 
Fisher 1973). 

Previously, series expansions for the Potts model on the simple cubic lattice had been 
obtained by Straley (1974) (for low-temperature In Z, M and x to z* and high-temperature 
series quoted to do) and by Miyashita et a[ (1979) (In Z with full field dependence to order 
z33 and full temperature dependence to p"). In 1993, Bhanot et a1 extended the freeenergy 
and magnetization series to 39 terms, and the susceptibility series to 35 terms. Vohwinkel 
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(1993) has given the magnetization series to 56 terms, and has (unpublished) similar length 
series for other thermodynamic properties. 

The description of the finitelattice calculations in I was couched in terms of the general 
q-state Potts model and it was that formalism that was used in the present study. As noted 
in I (see also U, equation (17a) and (176)). the amount of memory required increases with 
q. The present calculations used cuboids with cross sections of up to 3 x 4 sites, giving the 
low-temperature series correct to z4’. As described in I, comparing the 3 x 4 approximation 
for q = 2 to higher-order q = 2 calculations allows us to determine the correction required 
to the 3 x 4 approximation for all other q values. This has enabled us to extend the 
low-temperature series to P. 

For the high-temperature series, we ran on a 4 x 4 lattice, which required storage of 900 
MByte. This gave series correct to u21. All programs were run on an IBM 309W400J with 
f GByte of memory and 2GByte of backing storage. One run was also performed on a 
Cray EL. The runs for the high-temperature series took about 50 hours; the low-temperature 
3 x 4 lattice runs substantially less. To extend the low-temperature series would currently 
take 4 GByte of memory. However, for low-temperature series, we believe that the shadow- 
lattice method is computationally superior, so there seems little incentive to develop this 
method further for low-temperature Potts series. We discuss this point furthex in Guttmann 
and Enting (1993b). 

The coefficients for A,,, m,, c. and a, for q = 3 are listed in tables 1 and 2. These 
series disagree in several places with previously published series. The low-temperature 
series disagree at 2% with those published by Straley (1974). This error had previously 
been detected using series obtained by the method of partial generating functions (Enting, 
unpublished) and in fact the error was a typographical mistake: the analysis by Shaley used 
the correct series (Shaley, personal communication). Apparently the term quoted in the 
appendix to Straley (1974) as 486(yf + yi)xz4 should have been 496(yf + yg)x”. The 
low-temperature series also disagree with those of Miyashita er al (1979) at order zm. We 
have not been able to obtain the full fielddependent corrections to their series, but note that 
their coefficient for zmp5 should be (q - 1)5 times the corresponding king coefficient (see 
Sykes et al 1965), i.e. it should be 44998; and not 45008, as published. As our coefficients 
agree with those of Bhanot er al and Vohwinkel, we are confident that they are correct. 

The most serious discrepancies are between our new series and the high-temperature 
series published by Straley (1974), disagreeing at order U* and do. In view of the gross 
disagreements at quite low order, we present, in an appendix to this paper, an independent 
recalculation of these series for general q ,  using a conventional weak-graph expansion. 
This expansion confirms our finitelattice calculations and also reproduces the series for 
the mean number of clusters in bond percolation. The expansion also agrees with king 
model series  om I, but this is a weaker test of either our weak-graph expansion or the 
finitelattice method expansion because many graph types have zero contribution for q = 2 
and, in particular, only even powers of U occur. Nevertheless, this appendix provides useful 
series for general q ,  and is likely to be useful for other workers as a check on any long 
series that may subsequently be obtained. 

A J Gunmm and I G Enting 

3. Analysis of series 

The series generated as described above were all analysed by the method of differential 
approximants (DA) (Guttmann 1989, page 83ff). This method generalizes Pad6 approximants 
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Table 1. CoeRicients in low-bmperaturp expansions for Ao, M and x ,  defined by equations 
(3). (5) and (6). 

" A" m. C" 

0 
6 
IO 
11 
12 
14 
15 
16 
17 
I8 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
37 
38 
39 
40 
41 
42 

1 
2 
6 
6 

-12 
30 
60 

-96 
-132 
346 
498 

-636 
-2210 
3" 
7344 

-7110 
-25836 
17802 
107450 
-59358 
-353 376 
105944 

1342914 
-77 154 

-4 995 004 
-226914 
17383710 

-U127562 
-32638848 
231 546628 
160963416 

-805 061 298 
-795051840 

1 
-3 
-18 
-18 
42 

-135 
-270 
477 
648 

-1980 
-2988 
4140 
14052 

-21 690 
-52920 
55020 

201 852 
-162774 
-914538 
555 750 

3 229 5% 
-1 I88327 
-13301 370 

1402686 
52334268 

95751 
-195 398208 
761838084 
359 €64 885 

-2910516786 
-1 946958399 
10681 132140 
10207745 148 

0 
2 
24 
24 

-56 
270 
540 

-930 
-1296 
4768 
7968 

-10560 
36922 
U812 
I63 440 

-165464 
-659088 
600024 

3278256 
-1980408 
-12285816 
5005014 
55 200 864 
-6062712 

-227203096 
1954650 

914339736 
-3 742 275 288 
-1 761 828642 
15132717432 
10380877 350 

-58 385 376 120 
-56515869708 

43 2914349712 -40522674258 232316142012 

by fitting an ordinary differential equation of the form 

(with D' denoting ($') to the available series terms. Here & ( x )  = Czpkfx '  and 
P ( x )  = C z p i x '  are polynomials. We chose qmo = 1, so that the origin is not a 
regular singular point. This allows integration of the differential equation starting at x = 0. 
(This then corresponds to logarithmic derivative Pad6 a p p r o x i "  when m = 1.) For 
magnetization series, homogeneous DkF (P E 0) are often most useful. Generally, the 
degrees of Qk and P are chosen to use all (or most) of the available series terms. In 
principle, any order of differential equations can be used, but first-order (m = 1) was 
mostly used in the current work. Finding the coefficients of Qi and P reduces to the 
solution of a system of linear equations, but this system is often ill-conditioned, so that care 
must be taken in its solution. 
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Table 2. Coefficients in the high-lemperature expansion for 0, defined by equatjon ( I ) .  

n an 

0 
4 
6 
7 
8 
9 
10 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 

1 
6 
44 
36 

402 
688 

4836 
11 364 
69 466 

196 374 
I 091 436 
3583084 

18 627 090 
67523 316 

335 693 61 8 
1305112008 
6332595828 

21 25841846466 

These differential equations were then integrated numerically to obtain estimates of the 
desired physical quantities. In all cases a number (up to 10) of DAs were integrated and the 
results averaged to obtain the means and standard deviations shown in the tables and graphs 
below. All calculations were performed in quadruple precision (approximately 34 decimal 
places), so that all series terms could be represented without loss of precision. 

We performed the numerical integration with an extrapolation method of the Buliich- 
Stoer type, as described by Hairer (1987, section n.9). 

The analysis in U involved applying these methods to square-lattice series for comparison 
with the exact results of Baxter (1973, 1982) to assess the extent to which the methods could 
distinguish between first-order and continuous transitions. We showed that we could clearly 
distinguish the order of the transition in all known cases. 

Simple sequence transformations were used to generate the most appropriate series, and 
hence DA, for numerical integration. In general, if a quantity is believed to behave like 
T' at the origin of integration, it is often useful to transform the series C L o a i T i  say, to 
C h u i T i / T k  so that the transformed function approaches a constant at the origin. Thus, 
for example, we worked with the series for x/z6, rather than x itself. Similarly, instead of 
the magnetization M = 1 -3z6 - 18z'O - 18z" . . . , we worked with M - 1 +3z6. We now 
discuss our numerical results in greater detail. 

3.1. In teml  energy 

We integrated the internal energy series U(z) from T = 0 and T = 63 until they crossed 
at TE. The results are shown in figure 1, with the intersection region shown as an inset. 
It is perfectly clear already, from this graph alone, that the transition is first-order. This 
follows from the fact that the gradient is clearly discontinuous. The intersection of the two 
curves gives the critical temperature, From a range of several approximants, we find the 
intersection at kT/J  = 1.8168 f 0.0012. which compares with Monte Carlo estimates of 
1.8166zk0.0002 (Yamagata 1993). 1.816454-10.000032 (Alves eta1 1991), 1.8164f0.0001 
(Fukugitaetnl 1990), 1.8161~!=0.O001 (Gavai etal 1989)and 1.81624f0.00006(Wilson 
and Vause 1987). 
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kT/J-1.8163 

Flgurel. FreeenergyvermsTklJ-T,klJ. wheretheMonreCarloestimareofT.klJ = 1.8163 
has been used. The inset figure shows a blow-up of the intersection of the high- and low- 
tempemre curves. 

It is clear that these estimates do not all agree within the stated precision. However, it 
is also clear that the Monte Carlo estimates are all slightly lower than OUT estimate. The 
average of the Monte Carlo estimates is taken to be 1.8163, and all subsequent analysis 
will be performed using both our central estimate of T and the Monte Carlo average. Note 
too that the MC estimate is made under the assumption of a jirst-order transition, while our 
series analysis makes no such assumption. 

By differentiation, we can readiiy construct series for the high- and low-temperature 
internal energy. Integration of these gives a latent heat of 0.264 fO.O1l, where the error 
is one standard deviation in the average of the approximants. This error swamps the error 
induced by the uncertainty of the critical temperature. Our normalization of the Hamiltonian 
has, as a consequence, that the internal energy varies between 0 and 2. Other workers use a 
different normalization, in which the internal energy varies between 0 and 1. Therefore their 
latent heat estimates must be doubled to be compared with that given here. The specific heat 
at T; is found to be 30f4, while T,' was considerably lower, at 11.lf0.6. For afirst-order 
transition, the specific heat is undefined at TF, though the left- and right-hand limits are of 
course defined. By use of Monte Carlo methods, Gavai et al (1989) find a latent heat of 
0.16i0.008, Alves eta1 find 0.1606i0.0006, while Gavai and Karsch (1992) find a latent 
heat of 0.16OrtO.07. Our result is some 60% higher than these estimates. More precisely, 
we find E(TJ = 1.151 f 0.009 and E(T2) = 1.414 f 0.004. We have no explanation 
for the difference between our results and the Monte Carlo results. However, we note that 
our methods did give the correct latent heat in the two-dimensional case. That is, all the 
exact values lay within the range defined by the set of approximants with extreme outliers 
removed. 
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3.2. Magnetization 

As T,- is approached, the gradient decreases rapidly. Consequently, the magnetization gap 
depends critically on the estimate of the critical temperature. Using the MC value of Tc, we 
find AM = 0.498, while using our estimate of Tc we find AM = 0.505. Another factor is 
the length of the series. Extending the series by 13 terms, as has been done by Vohwinkel, 
gives AM = 0.463 at the Monte Carlo value of T,-a drop of 7%. A similar decrease is 
found using the extended series at the other value of Tc used. 

Monte Carlo estimates of this quantity have been obtained by Gavai et a! (1989), who 
find AM = 0.395 & 0.005, only a little lower than our estimate. 

In table 3 we show the location and residues of Dlog Pa& approximants to the 
magnetization series. They indicate a critical temperature of e''xrc ~ c 1  0.5785, some 0.3% 
above the value we believe to be correct. A 'pseudo magnetization exponent' around 0.2 is 
also suggested. As shown in n, this is entirely consistent with the existence of a first-order 
transition. 

A 3 G u t t m n  and I G Enting 

lhble 3. q = 3. Dlog Pad6 approximaras to the slmplesubic lattice spontanmw magnetization, 
giving the location and residue of the 'pseudo citical point'. 

N [ N  - IINI [NINI IN + VNI 
16 0.57804 (0.1990). 057822 (O.ux)8)' 0.57870 (0.2054) 
I7 0.57908 (0.2090) 0.57852 (0.2037)' 0.57855 (0.2040) 
18 0.57856 (02041) 0.57838 (0.2075). 0.57856 (0.2041)' 
19 0.57857 (0.2042). 0.57855 (0.2W)' 0.57934 (0.2031). 
20 0.57848 (0.2033) 0.57847 (0,2031) 

3.3. Susceptibility 

As for the specific heat, one expects the susceptibility at a first-order transition to be 
undefined, while having well defined left- and right-hand Limits. As we only have low- 
temperature susceptibility series, we can only find one limit. We find a large but finite 
value of the susceptibility at T;, notably 13 & 3 on the low-temperature side. 

4. Discussion of results 

Hamer er al (1992) have studied the quantum Hamiltonian version of the 3-state Potts 
model in (2 + 1) dimensions. They find AM = 0.42 f 0.02, and a latent heat jump of 
0.21 or 0.24, depending on the lattice. These numerical values are unexpectedly close to 
those of the three-dimensional 3-state Potts model which is the subject of this study. These 
quantities are non-universal, so no agreement is expected. Thus we see that the three distinct 
methods of study, series analysis and Monte Carlo of the Potts model, and series analysis 
of the quantum analogue of the Potts model, give consistent results. That is, they all find 
a fairly weak first-order transition, with a small latent heat, but quite a large jump in the 
magnetization. 

We have shown how the finite-lattice method can provide competitive series in 
threedimensions, though the computational complexity ensures that state-of-the-art direct 
methods, well programmed, will eventually be superior. Also, as the dimensionality 
increases, the method becomes steadily worse (Guamann and Enting 1993b). 
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We have also shown that series methods can provide not only qualitative information 
about the nature of a phase transition, but also quantitative estimates of critical parameters 
for first-order. as well as second-order phase transitions. 

Our methods have still provided by far the longest extant high-temperature series, and 
this is needed to determine the nature of the phase transition, as well as to identify its 
location. 

Appendix. Comparison with weak-graph expansions 

As noted in section 2, our high-temperature series shows significant differences from that 
given by Straley (1974). Since the program used to produce our series (and those of I) is 
our first use of a site representation for calculating high-temperature series, these differences 
caused us some concern. In order to check our program we recalculated the free energy 
using a conventional weak-graph expansion. 

The graphs that are required are those with no vertices of order 1 and in which the 
removal of one l i e  does not increase the number of components. Each graph requires a 
q-dependent weighting factor. This can be assigned by assigning each directed bond an 
integer flow in the range 1 to q - 1. At each vertex the sum of inwards flows minus 
outwards flows must be 0 modulo q (see, for example, Straley 1974). The weight is the 
number of ways such flows can be assigned. An alternative algebraic formulation is given 
by Domb (1974). In fact, as discussed by Essam and lkallis (1986), these are just flow 
polynomials, and they give. all the polynomials for graphs with less than six independent 
cycles. Their data provides a check of OUT calculation of weights in table Al. For planar 
graphs, the weighting is equivalent to 4-' times the number of q-colourings of the graph 
and its exterior (see, for example, Wu 1982). 

Table A I  gives details of the expansion. To save space, the lowest-order terms are not 
shown in the table. They are, at fourth order, three polygons, at sixth order, 22 polygons 
and at seventh order, 18 theta graphs. These then give the following low-order terms, with 
subsequent terms being given in the table: 

d 6 7 -lnh(q = I )  = 3x4 +22r - 18x + . . . 
dq 
In ~ ( 2 )  = 3x4 + 22.8 + ox7 + . . . 
lnA(3) = 6x4 +44x6 + 3&r7 + . . . 
In A(4) = 9x466x6 + 108x' + . . . 
InA(5) = 12x4 + 88x6 + 216x7.. . . 

The results of the finite-lattice calculations agree with the weak-graph expansion for 
In A. Furthermore. the q = 2 series (see I) reproduces the known kingmodel series. An 
interesting additional check is that our general-q expansion enables us to calculate K ( p ) ,  
the mean number of clusters in the low-density regime of the bond percolation problem. 
Bond percolation can be regarded as the q + 1 limit of the Potts model (see Fortuin and 
Kasteleyn (1972). or, more accesibly, Wu (1978)). Sykes (1986) gives series for site clusters 
which agree with our series, after taking into account the cluster of 1-site and zero bonds 
included in the Potts model limit, but excluded from conventional enumerations of bond 
percolation. 

The agreement between the series of Sykes and the results derived from the weak- 
graph expansion of the Potts model give a useful test of our tabulation because the original 
derivation of the percolation series used a quite different type of expansion. 
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Table Al. Details of high-temperature expansion in terms of weak lattic~ constants. The body 
of the table gives the lattice constant for 8 to 14 bonds on the sc lattice. (ThE contibution 
from lower-order graphs b given in the appendix). Column I identifies graph type, in the 
notation of Sykes et ai (1966). (a.6) denotes a type a and type b graphs with a common 
velfex. [a. bl is used to denote rypes o and b as separate componenls. The '8' denotes 
(p.p). the 'figure 8' type. Column 2 is the weight, with a common factor oi  q - 1 removed, 
Here S denotes (q - I), Q denotes (q - 2). T denotes (q - 3). Wp = Q(q2 - 5q t 7) and 
wl17 = Q(q3-9qzt29q-32). W ~ I  = Q(q3-6q2t149-13), Ws = QT(qZ-4qt5), W ~ O  = 
Q2(q2-5qt8). W n =  Q ( ~ 3 - 7 q z t l ~ - 1 7 ) , W ~ ~ = Q 2 ( q 2 - 5 q t 8 ) . W g 3 = ( Q ~ 2 .  W W =  
QT(q2-5qt7).WM= Q ~ ~ z - 3 q t 3 ~ . W o ~ ( q 3 - 5 q 2 t I O q - 7 ) . W g = Q ~ q 2 - - 2 q t 2 ) .  

~~ ~ 

Graph W 8 9 IO 11 12 13 14 

1 207 2412 31 754 452640 
Q 24 344 528 5934 12120 104250 239610 

8 24 228 
60 96 
84 288 
12 

12 

30 576 
456 

-828 

=P -1020 

996 
2556 
2400 
279 

15 
48 

1 
96 

9306 
648 
458 

-1224 
- 1620 

-17510 
1377 

5916 
6480 
9552 

168 
192 
384 

336 

14796 

-28560 

72 
1 50 
600 

204 
228 
108 
144 

I 20 
3 

29448 
16152 
52584 

5388 
1320 
1560 
756 
24 

4392 
152784 
24900 
14460 

-49656 
-54456 
-300 108 

48642 
-3384 

1674 
-408 

216 
-3450 

1704 
-4956 

2604 
-708 

384 
12 
96 
72 
24 
12 
96 
24 

1344 
300 

2112 
264 

1248 
240 
72 

1008 
144 
144 
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Table Al.  (continued) 
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Granh W 8 9 I O  11 12 13 14 

$ In A(q = I )  183 -328 2034 -5142 26539 -81183 381222 
Y 1980 24044 319 170 

In A(3) 384 688 4572 11184 66158 190662 1050924 
lo A(4) 2112 8856 34956 162624 693192 3153690 
In A(5) 804 4320 15912 73224 358220 1573821 7815144 
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